USN

12EC077

M.Tech. Degree Examination, June/July 2013

Synthesis and Optimization of Digital Circuits

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions.

- 1 a. Draw the Y chart for different level of abstraction and synthesis. Explain different levels briefly. (10 Marks)
 - b. Explain the different phases in the design of micro-electronic circuits. Give the block representation. (10 Marks)
- 2 a. Define the following terms with respect to concept of graph theory and give an example for each:
 - i) Undirected graph
 - ii) Directed graph
 - iii) Hyper graph (06 Marks)
 - b. Compute the shortest path weight of the graph shown in Fig.Q2(b): (08 Marks)

Fig.Q2(b)

- c. Consider the function f = ab + bc + ac. Compute the Boolean difference, the consensus and smoothing with respect to the variable a. Also indicate them in the cubical form. (06 Marks)
- 3 a. Consider the following model fragment,

$$x\ell = x + dx$$
; $u\ell = u - (3 * x * u * dx) - (3 * y * dx)$; $y\ell = y + u * dx$; $c = x\ell < a$;

Draw: i) Data flow graph, ii) Sequencing graph. (10 Marks)

- b. Briefly explain control flow based transformation and block level transformation. (10 Marks)
- a. Consider the three input, two output function $f_1 = \overline{abc} + \overline$

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
 (10 Marks)

5 a. Draw the logic network and logic network after elimination described by the following equation:

$$p = c\ell + de; q = a + b; r = p + \overline{a}, s = r + \overline{b}; t = ac + ad + bc + bd + e; u = \overline{q}c + q\overline{c} + qc;$$

 $v = \overline{a}d + bd + \overline{c}d + a\overline{e}; w = v; x = s; y = t; z = u.$ (10 Marks)

b. Explain briefly rule based systems for logic optimization. (10 Marks)

6 a. For the state diagram shown in Fig.Q6(a), find minimum static diagram.

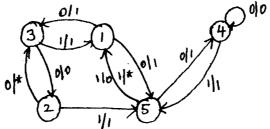


Fig.Q6(a)

(10 Marks)

b. Explain different types of finite state machine decompositions.

(10 Marks)

- 7 a. With suitable example, explain relative scheduling under timing constraints. (10 Marks)
 - b. What is the need of loop folding? With suitable sequencing graph, explain loop folding.

 (10 Marks)
- 8 a. Explain briefly tree based matching.

(08 Marks)

b. For the module function $m = s_1(s_2a + \bar{s}_2b) + \bar{s}$, $(s_3c + \bar{s}_3d)$ and cluster function $f = xy + \bar{x}z$. Draw programmable module, module and cluster ROBDD and representation of cluster function. (12 Marks)
